If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x=126
We move all terms to the left:
2x^2+5x-(126)=0
a = 2; b = 5; c = -126;
Δ = b2-4ac
Δ = 52-4·2·(-126)
Δ = 1033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1033}}{2*2}=\frac{-5-\sqrt{1033}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1033}}{2*2}=\frac{-5+\sqrt{1033}}{4} $
| -1+6a=7-2a | | 2x^+5x-42=0 | | 2x62+5x=12 | | 5v-18=7 | | 6x+5=3×+41 | | 69=6s-3 | | 0=-16t^2+35.52 | | 7/3+v=5 | | F(x)=15÷12-2x | | 6x+8-9(x+1)=3x+4 | | 10x^2-39x+36=0 | | 57=6s-3 | | 3^2x×4^x=5^3x-4 | | 5(3x-3)-(5x-9)=0 | | 9b-10b=6b-14 | | 3*17^3.1x=47 | | (2x-2)+x+(3x-4)=P | | 4=-f(-4-4) | | 10+5*x=7*x | | 10+5•x=7•x | | 6c+5=4c-7 | | 2x-2+x=3x-4 | | 11j=8.8/13.2 | | x/0.6=3.2 | | 2(31-7y)-10y=15 | | 5-2x+7x=-50 | | 4x-15+x+30=180 | | x/8=1.4 | | 0.03(3t+9)=0.09(t-3)+0.54 | | 5x-2-x=38 | | 15=-2x-x-6 | | 1=4x+x+1 |